Most people fully understand that electronics are useless without power, but what happens when devices lose power in the middle of operating? That answer is highly dependent on a number of variables including what type of electronic device is in question.
For solid state drives (SSDs) the answer depends on factors such as whether an uninterruptable power supply (UPS) is connected, what controller or flash processor is used, the design of the power circuit of the SSD, and the type of memory. If an SSD is in the middle of a write operation to the flash memory and power to the SSD is disconnected, many bad things could happen if the right safety measures are not in place. Many users do not think about all the non-user initiated operations the SSDs may be performing like background garbage collection that could be under way when the power fails. Without the correct protection, in most cases data will be corrupted.
According to the Nielsen company, 108.4 million viewers were tuned into the 2013 Super Bowl in New Orleans only to be shocked to witness the power go down for 34 minutes in the middle of the game. If power can be lost during such an incredibly high profile event such as this, it can happen just about anywhere.
Inside the New Orleans Superdome stadium operations and broadcast server rooms
Enterprise computing environments typically have multiple servers with data connections and lots of storage. Over the past few years, a larger percentage of the storage is kept on SSDs for the very active or “hot” data. This greatly improves data access time and reduces overall latency of the system. Enterprise servers are often connected to UPS systems that supply the connected devices with temporary power during a power failure.
Usually this is enough power to support uninterrupted system operations until power is restored, or at least until technicians can complete their current work and shut down safely. However there are many times when UPS systems are not deployed or fail to operate properly themselves. In those cases, the server will experience a power failure as abrupt as if someone had yanked the power cord from the wall socket.
The LSI® SandForce® Flash Storage Processors (FSPs) are at the heart of many popular SSDs sold today. The FSP connects the host computer with the flash memory to store user data in fast non-volatile memory. The SandForce FSPs are specifically engineered to operate in different environments, and the SF-2500/2600 FSPs are designed to provide the high level of data integrity required for enterprise applications. In the area of power failure protection, they include a combination of firmware (FW) and hardware circuitry that monitors the power coming into the SSD. In the event of a power failure or even a brown-out, the FSP is alerted to the situation and hold-up capacitors in the SSD provide the necessary power and time for the FSP to complete pending writes to the flash memory. This same circuit is also designed to prevent the risk of lower page corruption with Multi-level Cell (MLC) memory.
Watch out for SSD solutions that provide backup capacitors, but lack the necessary support circuitry and special FW to ensure the data is fully committed to the flash memory before the power runs out. Even if these other special circuits are present, only truly “enterprise” SSDs that are meticulously designed and tested to withstand power failures are up to the task of storing and protecting highly critical data.
In the control room and down on the field
The usage patterns of non-enterprise systems like notebooks and ultrabooks call for a different power failure support mechanism. Realize that when you have a notebook or ultrabook system, you have a built in mini-UPS system. A power outage from the wall socket has no impact to the system until the battery gets low. At that point the operating system will tell the computer to shut down and that will be ample warning for the SSD to safely shut down and ensure the integrity of the data. But what if the operating system locks up and does not warn the SSD or the system is an A/C-powered desktop without a battery?
The LSI SF-2100/2200 FSPs are purpose-built for these client environments and operate with the assumption that power could disappear at any point in time. They use special FW techniques so that even without a battery present, as is the case with desktop systems, they greatly limit the potential for data loss.
The naked facts
It should be clear that the answer to the original question is highly dependent upon the FSP at the heart of the SSD. Without having the critical features discussed above and designed into the LSI SandForce FSPs, it is very possible to lose data during a power failure. The LSI SandForce FSPs are engineered to withstand power failures like the one that hit New Orleans at the Super Bowl, but don’t expect them to fix wardrobe malfunctions.
Back in the day (starting in the 1970s), PDP and VAX minicomputers provided two bus signals, AC-LOW and DC-LOW which warned the CPU of an impending power crisis. The CPU would then could command hard-drives to writing out their buffers in the hundreds-to-tens of milliseconds remaining. I am surprised these features never made it into modern computers.
Maybe things just way too fast today 😉